Квантовая хромодинамика

Ква́нтовая хромодина́мика (КХД) — калибровочная теория сильных взаимодействий в физике элементарных частиц.

Содержание

История КХД


With the invention of bubble chambers and spark chambers in the 1950s, experimental particle physics discovered a large and ever-growing number of particles called hadrons. It seemed that such a large number of particles could not all be fundamental. First, the particles were classified by charge and isospin; then (in 1953) according to strangeness by Murray Gell-Mann and Kazuhiko Nishijima. To gain greater insight, the hadrons were sorted into groups having similar properties and masses using the eightfold way, invented in 1961 by Gell-Mann and Yuval Ne'eman. Gell-Mann and George Zweig went on to propose in 1963 that the structure of the groups could be explained by the existence of three flavors of smaller particles inside the hadrons: the quarks.

At this stage, one particle, the Δ++ remained mysterious; in the quark model, it is composed of three up quarks with parallel spins. However, since quarks are fermions, this combination is forbidden by the Pauli exclusion principle. In 1965, Moo-Young Han with Yoichiro Nambu and Oscar W. Greenberg independently resolved the problem by proposing that quarks possess an additional SU(3) gauge degree of freedom, later called color charge. Han and Nambu noted that quarks would interact via an octet of vector gauge bosons: the gluons.

Since free quark searches consistently failed to turn up any evidence for the new particles, it was then believed that quarks were merely convenient mathematical constructs, not real particles. Richard Feynman argued that high energy experiments showed quarks to be real: he called them partons (since they were parts of hadrons). James Bjorken proposed that certain relations should then hold in deep inelastic scattering of electrons and protons, which were spectacularly verified in experiments at SLAC in 1969.

Although the study of the strong interaction remained daunting, the discovery of asymptotic freedom by David Gross, David Politzer and Frank Wilczek allowed people to make precise predictions of the results of many high energy experiments using the techniques of perturbation theory. Evidence of gluons was discovered in three jet events at PETRA in 1979. These experiments became more and more precise, culminating in the verification of perturbative QCD at the level of a few percent at the LEP in CERN.

The other side of asymptotic freedom is confinement. Since the force between color charges does not decrease with distance, it is believed that quarks and gluons can never be liberated from hadrons. This aspect of the theory is verified within lattice QCD computations, but is not mathematically proven. One of the Millennium Prizes announced by the Clay Mathematics Institute requires a claimant to produce such a proof. Other aspects of non-perturbative QCD are the exploration of phases of quark matter, including the quark-gluon plasma.

Формулировка КХД

КХД простыми словами

Квантовая хромодинамика начинается с того, что мы постулируем, что каждый кварк обладает новым внутренним квантовым числом, условно называемым цветовым зарядом, или просто цветом. Термин «цвет», конечно же, не имеет никакого отношения к оптическим цветам и введён исключительно для целей популяризации. Дело в том, что инвариантная в цветовом пространстве комбинация есть сумма трёх различных цветов. Это сильно напоминает то, что сумма трёх основных оптических цветов — красного, зелёного и синего — дает белый цвет, т.  е. бесцветное состояние. Именно в этом смысле базисные вектора в цветовом пространстве часто называют не первый, второй, третий, а «красный» (к), «зелёный» (з) и «синий» (с). Антикваркам соответствуют анти-цвета (ак, аз, ас), причём комбинация «цвет + антицвет» тоже бесцветна. Глюоны же в цветовом пространстве есть комбинации «цвет-антицвет», причём такие комбинации, которые не являются инвариантными относительно вращений в цветовом пространстве. Таких независимых комбинаций оказывается восемь, и выглядят они следующим образом:

к-аз, к-ас, з-ак, з-ас, с-ак, с-аз, (к-ак − з-аз)/\sqrt{2}, (к-ак + з-аз − 2с-ас)/\sqrt{6}

Например, «синий» кварк может испустить «синий-антизелёный» глюон и превратиться при этом в «зелёный» кварк.

Лагранжиан КХД

Новая внутренняя степень свободы, цвет, означает, что кварковому полю приписывается определённый вектор состояния qi единичной длины в комплексном трёхмерном цветовом пространстве C(3). Вращения в цветовом пространстве C(3), т.  е. линейные преобразования, сохраняющие длину, образуют группу SU(3), размерность которой равна 32-1=8.

Поскольку группа SU(3) связна, все её элементы можно получить экспоненциированием алгебры ASU(3). Следовательно, любое вращение в C(3)

q^i = U^i_j q^j

можно представить в виде U = exp(icata), где 3×3 матрицы ta (a = 1 … 8) называются матрицами Гелл-Манна и образуют алгебру ASU(3). Поскольку матрицы Гелл-Манна не коммутируют друг с другом, [t^a, t^b] = i\,f^{ab}_c t^c, калибровочная теория, построенная на группе SU(3), является неабелевой (т. е. является теорией Янга — Миллса).

Далее используется стандартный принцип калибровочной инвариантности. Рассмотрим лагранжиан свободного кваркового поля

L = \bar{q} (i \partial_\mu \gamma^\mu - m) q\,

Этот лагранжиан инвариантен относительно глобальных калибровочных преобразований кварковых и антикварковых полей: q \to \exp(i c_a t^a) q,\ \bar q \to \exp(-i c_a t^a)\bar q, где ca не зависят от координат в обычном пространстве.

Если же потребовать инвариантность относительно локальных калибровочных преобразований (т. е. при ca(xμ)), то приходится вводить вспомогательное поле A_\mu^a. В результате, лагранжиан КХД, инвариантный относительно локальных калибровочных преобразований, имеет вид (суммирование по ароматам кварков также предполагается)

L = \bar{q} (i \partial_\mu \gamma^\mu + g A^\mu - m)q - {1\over 2} \mathrm{Tr\,} G^{\mu\nu} G_{\mu\nu}

где G_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - i g[A_\mu,A_\nu] тензор напряжённостей глюонного поля, а A_\mu \equiv \sum_{a=1}^{8} A^a_\mu t^a есть само глюонное поле.

Видно, что этот лагранжиан порождает наряду с вершиной взаимодействия кварк-антикварк-глюон и трёхглюонные и четырёхглюонные вершины. Иными словами, неабелевость теории привела к взаимодействию глюонов и к нелинейным уравнениям Янга-Миллса.

Применимость КХД к реальным процессам

Расчёты на основе квантовой хромодинамики хорошо согласуются с экспериментом в тех ситуациях, когда кварки и глюоны являются адекватным выбором степеней свободы. Такая ситуация имеет место при адронных столкновениях высоких энергий, в особенности, когда передача импульса от одной частицы к другой тоже велика по сравнению с типичным адронным энергетическим масштабом (порядка 1 ГэВ). При более низких энергиях, из-за сильных многочастичных корреляций работа в терминах кварков и глюонов становится малоосмысленной, и приходится на основе КХД строить эффективную теория взаимодействия бесцветных объектов — адронов.

Подробно про применение квантовой хромодинамики к описанию адронных столкновений см в статье Современное состояние теории сильных взаимодействий.

Ссылки

Учебные материалы

Исторические материалы

  • hep-ph/0412297, Remarks on the History of Quantum Chromodynamics, S. Adler.

КХД и падающая кошка

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home