Гиперболоид

В математике гиперболоид — это вид поверхности второго порядка в трёхмерном пространстве, задаваемый в декартовых координатах уравнением

{x^2 \over a^2} + {y^2 \over b^2} - {z^2 \over c^2}=1  (однополостный гиперболоид)

или

- {x^2 \over a^2} - {y^2 \over b^2} + {z^2 \over c^2}=1  (двухполостный гиперболоид).

Если a = b, то такая поверхность называется гиперболоидом вращения. Однополостный гиперболоид вращения может быть получен вращением гиперболы вокруг её мнимой оси, двухполостный — вокруг действительной. Двухполостный гиперболоид вращения также является геометрическим местом точек P, модуль разности расстояний от которых до двух заданных точек A и B постоянен: | APBP | = const. В этом случае A и B называются фокусами гиперболоида.

Однополостный гиперболоид является дважды линейчатой поверхностью; если он является гиперболоидом вращения, то он может быть получен вращением прямой вокруг другой прямой, скрещивающейся с ней. Это свойство линейчатости однополостного гиперболоида используется в архитектуре. В частности, Шуховская башня в Москве составлена именно из гиперболоидов, образованных прямыми стержнями.

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home