Кольцо (теория множеств)

В теории множеств кольцом называют непустую систему множеств R, замкнутую относительно пересечения и симметрической разности конечного числа элементов. Это значит, что для любых элементов A, B из кольца элементы A \cap B и A \triangle B тоже будут лежать в кольце.

Содержание

Свойства колец

  • Пустое множество принадлежит любому кольцу (так как \varnothing = A \triangle A).
  • Объединение конечного числа элементов кольца принадлежит кольцу, так как A \cup B = (A \triangle B) \triangle (A \cap B).
  • Разность элементов кольца также принадлежит кольцу, так как A \backslash B = A \triangle (A \cap B).

Расширения и сужения понятия

Кольцо является частным случаем полукольца. Более того, каждое полукольцо добавлением какого-то количества элементов можно превратить в кольцо. Минимальным кольцом, порождённым данным полукольцом S, называется такое R, что его содержит любое кольцо, содержащее S. Для каждого полукольца S такое R существует и единственно, оно состоит из всевозможных конечных объединений элементов S.

Алгеброй называется кольцо с единицей, то есть таким элементом E, что пересечение E с любым элементом A равно A. Сигма-кольцом называется кольцо, замкнутое относительно счётных объединений элементов, а дельта-кольцом — замкнутое относительно счётных пересечений. Аналогично определяется сигма-алгебра (при этом любая дельта-алгебра является сигма-алгеброй и наоборот).

Примеры

Примерами колец могут служить борелевская сигма-алгебра множеств на прямой или множество \{ A, B, A \cup B, \varnothing \}. Прямое произведение колец является полукольцом, но не обязано быть кольцом. Прямое произведение двух одинаковых колец из последнего примера не будет кольцом, потому что у элемента A_1 \times A_2 не будет дополнения до E. (Дополнение этого элемента до E можно представить, например, как объединение A_1 \times B_2 и B_1 \times E_2, но одним элементом нельзя.)

См. также

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home