Алгебра событий

Алгебра событийтеории вероятностей) — алгебра подмножеств пространства элементарных событий Ω, элементами которого служат элементарные события.

Как и положено алгебре множеств алгебра событий содержит невозможное событие (пустое множество) и замкнута относительно теоретико-множественных операций, производимых в конечном числе. Достаточно потребовать, чтобы алгебра событий была замкнута относительно двух операций, например, пересечения и дополнения, из чего сразу последует её замкнутость относительно любых других теоретико-множественных операций. Алгебра событий, замкнутая относительно счётного числа теоретико-множественных операций, называется сигма-алгеброй событий.

В теории вероятностей встречаются следующие алгебры и сигма-алгебры событий:

Алгебры и сигма-алгебры событий — это области определения вероятности \mathbf{P}. Если \mathbf{P} (x)=0, то событие x \subseteq \Omega называется невозможным событием; если \mathbf{P}(x)=1, то событие x \subseteq \Omega называется достоверным событием;

Любая сигма-аддитивная вероятность на алгебре событий однозначно продолжается до сигма-аддитивной вероятности, определенной на сигма-алгебре событий, порожденной данной алгеброй событий.

Литература

  • Колмогоров А. Н. Основные понятия теории вероятностей. М., 1974.

См.также

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home