Фильтр с конечной импульсной характеристикой

Фильтр с конечной импульсной характеристикой (нерекурсивный фильтр, КИХ-фильтр) — один из видов электронных фильтров, характерной особенностью которого является ограниченность по времени его импульсной характеристики (с какого-то момента времени она становится точно равной нулю). Такой фильтр называют ещё нерекурсивным из-за отсутствия обратной связи. Знаменатель передаточной функции такого фильтра — некая константа.

Содержание

Динамические характеристики

Разностное уравнение, описывающее связь между входным и выходным сигналами фильтра: y\left (n\right)=b_0 x\left(n\right)+ b_1 x\left(n-1 \right)+...+b_P x\left(n-P \right) где P — порядок фильтра, x(n) — входной сигнал, y(n) — выходной сигнал, а bi — коэффициенты фильтра. Запишем предыдущее уравнение в более ёмком виде:

y \left( n \right) = \sum_{i=0}^{P} b_i x \left( n-i \right)

Для того, чтобы найти ядро фильтра положим

x(n) = δ(n)

где δ(n) — дельта-функция. Тогда импульсная характеристика КИХ-фильтра может быть записана как:

h\left (n\right)=\sum_{i=0}^{P}b_i \delta\left(n-i\right)

Z-преобразование импульсной характеристики даёт нам передаточную функцию КИХ-фильтра:

H\left(z\right)=\sum_{i=0}^{P}b_i z^{-i}

Свойства

КИХ-фильтр обладает рядом полезных свойств, из-за которых он иногда более предпочтителен в использовании, чем БИХ-фильтр. Вот некоторые из них::

  • КИХ-фильтры устойчивы.
  • КИХ-фильтры при реализации не требуют наличия обратной связи.
  • Фаза КИХ-фильтров может быть сделана линейной

См. также

Ссылки

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home