Губка Менгера

Губка Менгерагеометрический фрактал, трёхмерный аналог коврика Серпиньского.

Построение

Куб K0 с ребром 1 делится плоскостями, параллельными его граням, на 27 равных кубов. Из куба K0 удаляются центральный куб и все прилежащие к нему по двумерным граням кубы этого подразделения. Получается множество K1, состоящее из 20 оставшихся замкнутых кубов «первого ранга». Поступая точно так же с каждым из кубов первого ранга, получим множество K2, состоящее из 400 кубов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность

K_0\supset K_1\supset\dots\supset K_n\supset\dots

пересечение которых есть губка Менгера.

Свойства

  • Губка Менгера имеет промежуточную (т. е. не целую) Хаусдорфову размерность, которая равна \ln20/\ln3\approx 2,73 поскольку она состоит из 20 равных частей, каждая из которых подобна всей губке с коэффициентом подобия 1/3.
  • Губка Менгера имеет топологическую размерность 1, более того
    • Губка Менгера топологически характеризуется как одномерный связный локально связный метризуемый компакт, не имеющий локально разбивающих точек (т. е. для любой связной окрестности U любой точки x\in M множество U\backslash x связно) и не имеющий непустых открытых и вложимых в плоскость подмножеств.
  • Губка Менгера является универсальной кривой Урысона, то есть она обладает тем свойством, что какова бы ни была кривая Урысона C, в губке Менгера найдется подмножество C', гомеоморфный C.
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home