Счётное множество

В теории множеств счётное мно́жество есть бесконечное множество, элементы которого возможно занумеровать натуральными числами. Более формально: множество X является счётным, если существует биекция X\to{\mathbb N}, где {\mathbb N} обозначает множество всех натуральных чисел. Другими словами, счётное множество — это множество, равномощное множеству натуральных чисел.

Счётное множество является «наименьшим» бесконечным множеством, т. е. в любом бесконечном множестве найдётся счётное подмножество.

Содержание

Свойства

  1. Любое подмножество счётного множества конечно или счётно;
  2. Объединение конечного или счётного числа счётных множеств счётно;
  3. Прямое произведение конечного числа счётных множеств счётно;
  4. Множество всех конечных подмножеств счётного множества счётно;
  5. Множество всех подмножеств счётного множества континуально и, в частности, не является счётным.

Связанные понятия

Несчётное множество — такое бесконечное множество, которое не является счётным. Таким образом, любое множество является либо конечным, либо счётным, либо несчётным.

Примеры

Множество рациональных чисел и множество алгебраических чисел счётны, однако множество вещественных чисел континуально и, следовательно, несчётно.

См. также

 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home